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1 Loss functions
1.1 Entropy Regularization Loss
Similarities and differences to variational methods Notably, the evidence lower bound (ELBO)
used in Variational Autoencoders (VAEs) [1] also optimize the KL-divergence between the posterior
latent distribution 𝑞𝜃 and a distribution 𝑝𝜙 where each latent entry is mutually independent:

ℒELBO = −[𝔼𝑧∼𝑝𝜙(𝑧 | 𝑥) log 𝑞𝜃(𝑥 | 𝑧) − 𝐷KL(𝑝𝜙(𝑧 | 𝑥) ∥ 𝑞𝜃(𝑧))] (1)

However, there are some ground-breaking differences that make our method more suitable for some
applications. First, entropy regularization loss provides more flexibility and can be used as a
regularization term for other loss functions, as it is effectively a regularization term. In contrast,
ELBO loss needs to act as the sole loss for optimizing a model. Second, it is more reasonable to
assume the distortion information for a sampled image to also be a fixed vector, instead of an
unpredictable quantity. However, VAEs need to assume the latent as a random variable for its
calculation. Lastly, we believe the distribution of realistic degradations’ latents is intractable to
model. Instead of having a restrictive assumption on 𝑝 and 𝑞, and calculate the divergence term
analytically, our method does not constraint the marginal distrobution of 𝑝 and 𝑞 and only focus on
disentangling individual entries in 𝒆⋅.

In this section, we summarize the rationale behind the loss functions used in our model that are not
detailed in the main paper.

1.2 Perceptual Loss
We observed that the random state in stochastic distortions, such as noise has very limited effects at
human perception. However, most IQA metrics have strong preferences towards (a) exact
reconstruction, and (b) blurry images, instead of images with similar patterns. We choose DISTS [2]
as 𝑑, since it has the least severe undesirable bias. The construction of an IQA that eliminate these
bias is reserved for future works. This section details the observations.

Most conventional Full-referenced IQA (FR-IQA) methods are based on measuring the similarity/
error between a target image 𝒚 and a clean (reference or pristine) image 𝒙. Many of the metrics are
symmetric, meaning they carry out the same operation on 𝒙 and 𝒚, making IQA(𝒙, 𝒚) = IQA(𝒚, 𝒙)
[2], [3], [4], [5], [6], [7], [8], [9], [10]. However, this equality does not hold in general for many other
FR-IQAs [11], [12]. Since the objects whose distances are to be compared are symmetric in our
application, the asymmetric methods are not suitable for our application of comparing a realistic
distorted image with a simulated distorted image.

Since it is impractical to inspect all degradations, we shall focus on the theoretical performance of
FR-IQAs in image degradation with stochastic effects, mainly noise. Symmetric FR-IQAs usually
involves square-error-like components either directly [4] or through SSIM-like terms [2], [3], [5],
[6], [7], [8], [9], [10]. These methods possess a common problem: When comparing noisy images, they
penalize images with similar noise patterns more than a “clean” image, especially when applied to the
spatial domain or an orthogonal transform domain (see Figure 1). Let 𝑑 denotes the IQAs in
question, and assume 𝑑(𝒙, 𝒚1) < 𝑑(𝒙, 𝒚2) means the model 𝑑 regard 𝒚1 as closer to 𝒙 than 𝒚2.

In this section, we assume the noises to have zero mean. Let 𝒚1 = 𝒙 + 𝒏1 and 𝒚2 = 𝒙 + 𝒏2, where
𝒏1 and 𝒏2 may be dependent on 𝒙, we further assume noise on the same location is independently
generated (conditioning on 𝒙), i.e., 𝑝(𝑛(𝑖,𝑗)

1 𝑛(𝑖,𝑗)
2 | 𝒙) = 𝑝(𝑛(𝑖,𝑗)

1 | 𝒙)𝑝(𝑛(𝑖,𝑗)
2 | 𝒙).

MSE actually indicates 𝒚1 is more similar to 𝒙 than to 𝒚2:



(a) Reference (b) GN-11 (c) GN-12

SSIM(Ref, GN-11) = 0.59 SSIM(GN-11, GN-12) = 0.45

Figure 1:  Indication of the issues with SSIM for capturing the similarity of noises. GN-11 and GN-12 are the
same image applied with the same strength of Gaussian noise.
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Let 𝒙 and 𝒚 be two image patches; let us consider SSIM [3]

SSIM(𝒙, 𝒚) =
2𝜇𝒙𝜇𝒚 + 𝑐1

𝜇2
𝒙 + 𝜇2

𝒚 + 𝑐1
⋅

2𝜎𝒙𝒚 + 𝑐2

𝜎2
𝒙 + 𝜎2

𝒚 + 𝑐2
. (4)

Denoting the second term as 𝑐(𝒙, 𝒚), and assuming the patch is large enough such that we may
approximate sample mean by distribution mean, we get

𝑐(𝒚1, 𝒙2) = 2𝜎2
𝒙 + 𝑐2

2𝜎2
𝒙 + 𝜎2

𝒏1
+ 𝑐2

(5)

and

𝑐(𝒚1, 𝒚2) = 2𝜎2
𝒙 + 𝑐2

2𝜎2
𝒙 + 𝜎2

𝒏1
+ 𝜎2

𝒏2
+ 𝑐2

. (6)

The above derivation shows that SSIM has the same issue as MSE in comparing two noisy images.
Due to the embedded similar calculations, MS-SSIM [5], CW-SSIM [6], DISTS [2] (first level), and
many other metrics are affected in the same way, but to a different extent.



(a) Clean image (b) Corresponding distorted image (c) Redistorted Image

Figure 2: Examples of color shift observed in result images when the color loss was not applied.

Based on our preliminary experiments, deep features are more robust to the change of random
states, and DISTS [2] and LPIPS [4] are the best and second-to-the-best similarity measures among
the aforementioned methods in this aspect, even though the spatial-domain global SSIM in DISTS
has negative effects.

Although we have selected a similarity measurement after some compromise, selecting a good
universal perceptual similarity measurement remains a considerable problem. For example,
calculating the ℓ2 distance on a transform domain is unlikely to solve the aforementioned problem
with degradation similarity in distance measurements, unless some manifolds in the spatial domain
collapse in the transform domain. More generally, suppose we have a distance metric 𝑑′ that satisfies
the “equivalence” property to the ℓ2 distance 𝑑, i.e.

𝑐𝑑′(𝑎, 𝑏) ≤ 𝑑(𝑎, 𝑏) ≤ 𝐶(𝑎, 𝑏) (7)

for some positive constants 𝑐 and 𝐶 .

Let 𝒚1 = 𝒙 + 𝒏1, and 𝒚2 = 𝒙 + 𝑁𝒏2, where 𝒏1 and 𝒏2 have zero-mean i.i.d. distributions. Then,
we are still expecting

𝑑′(𝒙, 𝒚1) > 𝑑′(𝒚1, 𝒚2). (8)

However,

𝔼[𝑑′(𝒙, 𝒚1)]
2 ≤ 𝐶2𝔼[𝑑(𝒙, 𝒚1)]

2 = 𝐶2

1 + 𝑁2 𝔼[𝑑(𝒚1, 𝒚2)]
2

≤ 𝐶2

(1 + 𝑁2)𝑐2 𝔼[𝑑′(𝒚1, 𝒚2)]
2.

(9)

As long as 1 + 𝑁2 > 𝐶2

𝑐2 , the desirable condition (8) will be violated.

1.3 Color loss
With the other loss functions mentioned in the main task, the model is able to reproduce realistic
degradations, but we observed significant color shift in some training examples (Figure 2). To
suppress the unwanted color distortions, we add a color loss in a similar manner as proposed in [13]:

ℒcolor = 𝑑′(𝑏(𝒚), 𝑏(𝒚)), (10)

where 𝑑′ is another image distance measurement and 𝑏 is a Gaussian blur operation with very large
radius. After applying the low-pass filter, most texture information on 𝒚 will be lost, and the only
thing to be compared is the color information. Since there is almost no stochastic nature in the very



blurry images, the problems of most IQAs in handling stochastic effects (see discussions in the
previous subsection) are no longer of concern. Hence, we select 𝑑(𝑰1, 𝑰2) to be the ℓ1 distance of 𝑰1
and 𝑰2 after normalizing both images.

2 Detailed rationalization of model architecture
To construct an implicit degradations model, we note that all homogeneous degradations can be
described by the implicit model:

𝒚 = 𝑓(𝒙, 𝒆𝑔, 𝒏), (11)

where 𝒙 is a pristine image, 𝒆𝑔 is the description of degradation type, order and parameters, 𝒏 is a
random state, and 𝑓  is an operator performing distortions based on the description. We further
introduce a degradation map 𝒆𝑙 to describe degradations that vary though spatial locations
(inhomogeneous degradations):

𝒚 = 𝑓(𝒙, 𝒆𝑔, 𝒆𝑙, 𝒏). (12)

A network 𝑓  is trained to simulate 𝑓 , and 𝒆𝑔 ≔ 𝑒𝑔(𝒚) ∈ ℝ𝑛𝑔  and 𝒆𝑙 ≔ 𝑒𝑙(𝒚) ∈ ℝ𝑐𝑙×ℎ
𝑟 ×𝑤

𝑟  are
predicted by the homogeneous degradation embedding (HDE) network 𝑒𝑔 and the inhomogeneous
degradation embedding (IDE) network 𝑒𝑙:

𝒚 ≔ 𝑓(𝒙, 𝑒𝑔(𝒚), 𝑒𝑙(𝒚), 𝒏). (13)

During the training phase, the distorted image 𝒚 is used as a ground-truth for distorting its
corresponding pristine image 𝒙. Our disentangle-by-compression technique is able to segregate
image degradation information from semantics, which allows us to transfer distortions from 𝒚 to a
pristine image 𝒙 with different contents during the test phase.

In contrast to existing models, our model has no degradation type- or order-specific structure. With
single time of training, out model is applicable to any types and combinations of distortions in the
training set. The robust degradation transfer ability allows our model to be applied in GAN
inversion-based image restriction tasks.



3 More visuals
3.1 Degradation encoding and transfer

Figure 3:  The result of distortion encoding and transfer. In the first row, five distorted image patches
(𝒚(𝑗)’s) containing different image degradations are shown. In the first column are their

corresponding pristine images 𝒙(𝑖)’s. In each remaining grid is the synthetic distorted image
generated by transferring distortions from 𝒚(𝑗) to 𝒙(𝑖).
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Figure 4:  The result of distortion transfer for the realistic rain drop dataset [14]. The meaning of
each grid is the same as Figure 3



3.2 Extra experiments on real-world datasets
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Figure 5:  The result of testing our model on reproducing motion blur on the GoPro [15] dataset.

We performed new experiments on the GoPro dataset [15] for real-world motion blur to test its
distortion reproduction performance. Our model achieved a MS-SSIM score of 0.94 (see Figure 5 for
visual samples).

3.3 Disentangling of latent entries
By analyzing variances, we identified five active dimensions in 𝒆𝑔 for the model trained on the
distorted WQI dataset. To demonstrate disentanglement, we modified each dimension of the
degradation embedding for a pristine test image. All active dimensions are shown in Figure 6. Most
degradation embedding dimensions control multiple degradations simultaneously, aligning with our
understanding of natural biases and masking effects in the dataset.

As an example for why each dimension should not control one distortion, if a dimension controls
noise and another controls blur level after noise, in an image with high blur level, the observed noise
level is always low, which makes the two variable highly dependent to each other. A simulated
example when each latent controls a single distortion is shown in Figure 7.

3.4 Ablation studies
While the ablation study results for disentangle-by-compression is only obvious through the
quantitative results, the one for IDA and IDEN is more visually apparent.



Dim 133: JPEG compression applied after noise

Dim 227: Isotropic blur

Dim 70: JPEG compression applied after blur

Dim 168: Motion blur

Dim 124: Motion blur

Figure 6:  Demonstration of degradation latent disentangling by varying single entry in 𝒆𝑔 on a
every active dimension. In each row, an active dimension of the degradation embedding is varied by
a fixed amount. The dimensions are ordered based on their standard deviations. The degradations a

single dimension controls is labeled on the figure.



Figure 7:  Simulated scenerio if one dimension in 𝒆𝑔 controls blur kernel’s size and the other one
controls the noise level. As indicated in the figure, the observed noise level and blur kernel size are

highly dependent on each other.
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Figure 8:  The result of ablation studies for IDA and IDEN.

Figure 8 shows some examples in our ablation testset. While the model without IDA and IDEN is
totally incapable of capturing inhomogeneous degradation, the model without IDA mainly struggles
in reproducing inhomogeneous degradation when combined with a HDE from an image without



local degradation. This indicates that the model without IDA is less capable at disentangling
inhomogeneous degradation information from homogeneous.

3.5 Comparison with StyTr2
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Figure 9:  Visual results for StyTr2 [16] (retrained on the distortion dataset) and compared with our
model. StyTr2 [16] fails at separating distortion from content, hence, alters skin tone and texture

while not transferring distortions.

Extra visual results for the comparison with StyTr2 [16] are shown in Figure 9. The model fails to
transfer distortions from the distorted image to the pristine image, and instead alters the skin tone
and texture.

3.6 Inversion-based image restoration
See Section 5.3 for the more visualizations of GAN inversion-based image restoration and Section 5.4
for the visuals of diffusion inversion-based image restoration.

4 Details of the Proposed Dataset
We collected around 300K Wikimedia Quality Images (WQIs) [17], and filtered out non-photographic
images. We then applied JPEG compression after zero or more rounds of the following degradations
of varying strengths (the probability of applying each degradation and the possible parameters are
available in the supplied code):
• Gaussian noise to simulate sensor noise,
• Gaussian blur to simulate out-of-focus,
• Motion blur to simulate camera shake,
• contrast adjustment to simulate exposure change.



These combined into 16 different combinations of degradations. The code for collecting and
processing the dataset is available at the code_appendix/wm/ directory.

5 Details of the Experiments
5.1 Training Environment
We trained our model on a cluster. Each of its nodes is equipped with
• two Intel Gold 6148 Skylake CPUs,
• 186 G RAM (although we only used a fraction of it), and
• 4 NVIDIA V100 GPUs (16GB GRAM each).

Each of them runs a customized Rocky Linux 8.

5.2 Details of the Training Procedure
The training code and parameters are available in the code_appendix/train/ directory with
identifying details redacted. Each model is trained for 1 day for those on FFHQ and 3 days for others.

All other details about training are available in the code appendix.

5.3 GAN-inversion-based image restoration
The generation network of StyleGAN contains 𝑁𝐿 layers, and each layer contains 𝑁𝐹  AdaIN layers
[18], each of which accepts a style vector 𝒔𝑙

𝑖 ∈ ℝ512 generated by passing 𝒘 through an affine
mapping 𝒔𝑙

𝑖 = 𝐴𝑙(𝒘), where 𝒘 = 𝑓(𝒛) ∈ 𝒲 = ℝ512. Some models [19], [20], [21], [22], [23] make
use of the property, and introduce the 𝒲+ space, where 𝒘+ ∈ ℝ𝑁𝐿×512 and generate 𝒔𝑙

𝑖 =
𝐴𝑙((𝒘+)𝑙). Poirier-Ginter and Lalonde [24] further expanded the idea by progressively optimizing
on the 𝒲, 𝒲+, and 𝒲++ space, where 𝒲++ ∋ (𝒘++) ∈ ℝ𝑁𝐹×𝑁𝐿×512 and 𝒔𝑙

𝑖 = 𝐴𝑙((𝒘++)𝑙
𝑖).



Figure 10:  The GAN inversion procedure in [24] and the proposed modifications. In the original
design (highlighted in red) uses a closed form approximation of the degradations presented in the
distorted image. The degradation parameters (e.g. the strength of noise) are known at restoration
time. In our modified design (highlighted in blue), the closed-form degradation approximation is

replaced by our degradation encoding-decoding structure.

The optimization procedure in [24] is divided into three phases to achieve the final goal

min
𝒘++

LPIPS(𝒚, 𝐷𝜃𝑑
(𝐺(𝒘++))), (14)

where 𝐷𝜃𝑑
 is the continuous approximation of the degradation operation defined by the known

parameter 𝜃𝑑. During the first phase (the 𝒲 phase), the latent 𝒘++ ∈ ℝ𝑁𝐹×𝑁𝐿×512 is set to be the
expansion of 𝒘 ∈ ℝ512, i.e., (𝒘++)𝑙

𝑖 = 𝒘, and in the second phase (the 𝒲+ phase), 𝒘++ is set to be
the expansion of 𝒘+ ∈ ℝ𝑁𝐿×512, i.e., (𝒘++)𝑙

𝑖 = 𝒘+
𝑖 , for each 𝑙. In the last phase (the 𝒲++ phase),

each entry in 𝒘++ is optimized freely.

To mitigate its drawback of the necessity of knowing degradations during restoration, we introduce
our model as the redegradator, replacing the known differentiable approximation of the degradation
process used in [24] (see Figure 10). We retrained our model on the FFHQ dataset [25], which is the
training set of StyleGAN [26] that is used in [24]. We then used the trained degradation model to
replace 𝐷𝜃𝑑

, and modified the objective as

min
𝒘++,𝒆𝑔,𝒆𝑙,𝒏

LPIPS(𝒚, 𝑓(𝐺(𝒘++), 𝒆𝑔, 𝒆𝑙, 𝒏)), (15)

where 𝒆 is the degradation embedding, 𝒏 is the random state, and 𝑓  is the redegradation module.
Inspired by [24]‘s design choice, we initialize 𝒏 ∼ 𝒩(0, 𝐼), as expected by 𝑓 , and initialize 𝒆 = 𝑒(𝒚).
In addition, we further introduce a 𝒱 phase before the 𝒲 phase, in which only the 𝒘 latent to the
StyleGAN generator is optimized, and 𝒆 and 𝒏 are frozen. In the subsequent phases, 𝒆 and 𝒏 are
optimized with 𝒘, 𝒘+ and 𝒘++. In practice, we initialize 𝒆𝑑 = 𝑒(𝒚) at the early stages of [24]’s
optimization, and optimize 𝒆𝑑 along with 𝒘+ and 𝒘++ in later optimization stages.



5.3.1 Visualizations
In Figure 25, we show examples for all tasks generated by RSG [24], the naive blind GAN inversion-
based image restoration algorithm, and our proposed solutions. For single tasks, only level “L” is
shown. It can be clearly seen from the examples that our model is able to restore a realistic face for
most tasks, similar to [24]. RSG [24] also struggles on examples that our model struggles, suggesting
the imperfectness does not come from our modifications. However, the naive blind method fails,
especially at tasks involving noise and inpainting, generating significantly annoying and sometimes
terrifying artifacts.

Task: Upsampling

RSG DIR Ours

Task: Denoising

RSG DIR Ours

Task: Deartifacting

RSG DIR Ours



Task: Inpainting

RSG DIR Ours

Task: NA

RSG DIR Ours

Task: AP

RSG DIR Ours



Task: UA

RSG DIR Ours

Task: NP

RSG DIR Ours

Task: UN

RSG DIR Ours



Task: UP

RSG DIR Ours

Task: UNP

RSG DIR Ours

Task: UAP

RSG DIR Ours



Task: UNA

RSG DIR Ours

Task: NAP

RSG DIR Ours

Task: UNAP

RSG DIR Ours
Figure 25:  Restoration resules from different algorithms.



5.3.2 Complete Quantitative Results
Table 1 shows the quantitative comparison of our algorithm against the naive blind GAN inversion-
based image restoration algorithm (RSG [24] without degradation information and without our
augmentation). The performance of non-blind GAN inversion-based image restoration algorithms
(PULSE [19], L-BRGM [21], and RSG [24]) is also listed for reference. and the non-blind image
restoration algorithms.

There are two important details that should be noted for interpreting the results:
1. The main contribution of PULSE [19], L-BRGM [21], and RSG [24] was to introduce optimization

methods for GAN inversion-based image restoration. They are not designed to extract
degradations. Instead, the re-degradation process was purely based on the recorded degradation
parameters (when generating the test set). Hence, our augmented methods are inherently
handicapped in comparison to these methods. Since we did not attempted to improve the
optimization method developed by RSG [24], a slight performance drop is expected from
RSG, since our augmented method has less available information during restoration time (we
are still able to outperform PULSE [19] and L-BRGM [21] on nearly all tasks). However, plugging
in our model to RSG [24] allows us to apply GAN inversion-based image restoration to more
practical scenarios.

2. While RSG augmented without our model appears to have slightly better performance as
indicated in some categories’ accuracy and fidelity scores, their results involves significantly
artifacts in the restored images (as indicated by the bad realism score and visuals in Section 5.3.1),
making them unusable in real-world applications.



Accur. (LPIPS) ↓ Fidelity (LPIPS) ↓ Realism (pFID) ↓
Non-Blind Blind Non-Blind Blind Non-Blind Blind

Augmented
RSG

Augmented
RSG

Augmented
RSG

PUL LBR RSG PUL LBR RSG PUL LBR RSG

w/o
Ours

w/
Ours

w/o
Ours

w/
Ours

w/o
Ours

w/
Ours

Upsampling (U)
XS .493 .407 .414 .378 .433 .432 .295 .313 .258 .356 44.5 23.6 17.0 12.8 20.8

S .492 .412 .449 .413 .448 .353 .140 .239 .178 .279 34.3 25.5 22.0 22.5 16.9
M .495 .458 .472 .451 .459 .261 .124 .172 .109 .202 29.3 35.4 22.3 42.0 28.8
L .501 .487 .490 .487 .477 .185 .129 .127 .073 .121 21.9 26.0 20.9 45.5 41.0

XL .512 .506 .514 .524 .512 .083 .095 .090 .070 .065 24.9 21.3 21.3 31.4 66.0
Denoising (N)

XS .501 .440 .425 .616 .452 .275 .152 .156 .292 .186 56.1 27.2 18.5 169.1 17.0
S .499 .450 .434 .658 .484 .252 .138 .140 .306 .172 53.7 28.6 19.1 201.3 19.2

M .500 .465 .446 .697 .482 .224 .155 .130 .307 .168 54.5 22.1 19.8 235.6 19.8
L .501 .481 .457 .729 .504 .185 .138 .110 .325 .152 56.4 24.6 19.2 274.1 20.4

XL .504 .511 .474 .742 .549 .134 .110 .084 .401 .127 49.4 25.1 17.9 318.6 25.2
Deartifacting (A)

XS .498 .442 .432 .424 .442 .404 .341 .349 .340 .366 52.3 26.3 14.8 25.7 16.4
S .497 .448 .437 .436 .449 .398 .352 .350 .345 .369 49.6 22.4 15.4 32.3 16.6

M .498 .461 .445 .451 .457 .413 .357 .357 .352 .377 33.2 24.1 15.4 41.7 16.9
L .500 .475 .460 .472 .470 .395 .367 .374 .361 .389 46.9 25.2 16.0 57.5 18.6

XL .508 .503 .490 .501 .495 .427 .418 .412 .385 .414 30.8 22.1 18.7 81.0 22.8
Inpainting (P)

XS .498 .409 .378 .345 .423 .464 .374 .348 .314 .391 46.9 24.4 12.9 10.9 17.2
S .501 .425 .387 .386 .422 .356 .287 .264 .254 .295 42.3 27.2 14.2 15.0 17.5

M .509 .438 .396 .425 .427 .283 .227 .206 .207 .231 38.5 30.1 14.5 22.0 17.4
L .513 .452 .409 .464 .439 .231 .184 .163 .176 .183 32.6 33.1 15.3 29.8 18.2

XL .524 .460 .422 .496 .446 .187 .157 .132 .152 .151 36.2 25.2 15.9 39.0 18.6
2 degradations

NA .517 .485 .459 .680 .513 .328 .301 .290 .424 .334 43.4 24.2 17.3 228.8 28.1
AP .511 .478 .457 .506 .463 .270 .231 .204 .232 .219 29.7 17.6 17.0 45.1 16.9
UA .510 .518 .508 .519 .512 .307 .348 .287 .274 .275 23.7 20.5 19.7 47.8 30.0
NP .511 .480 .458 .713 .485 .125 .079 .062 .187 .081 47.0 20.9 19.2 221.9 20.6
UN .501 .519 .511 .700 .564 .178 .149 .153 .273 .177 33.4 26.2 21.1 211.2 41.4
UP .510 .478 .485 .541 .478 .140 .061 .089 .130 .097 23.9 35.3 20.7 57.7 38.8

3 degradations
UNP .510 .526 .507 .715 .590 .086 .062 .051 .156 .082 28.5 22.1 20.1 215.6 60.9
UAP .525 .523 .513 .588 .526 .205 .154 .119 .169 .115 23.0 18.4 20.5 80.5 34.8
UNA .521 .535 .533 .669 .569 .265 .310 .290 .407 .298 26.2 20.7 22.8 175.5 34.5
NAP .526 .502 .470 .686 .508 .210 .197 .160 .282 .182 38.7 18.4 18.5 213.7 25.3

4 degradations
UNAP .533 .546 .525 .666 .560 .192 .177 .131 .251 .141 25.5 21.1 21.8 147.4 31.7

Table 1:  Quantitative comparison of our algorithm against non-blind and the naive blind algorithm
(DIR) on the restoration of images degraded by single/multiple distortions of different levels. Blind

methods that perform the best in each category are shown in bold fonts.



5.4 Diffusion inversion-based image restoration
Distorted DPS w/ ours DPS w/o ours

Figure 26:  The result of plugging in our model to Diffusion Posterior Sampling (DPS) [27].

Due to the limited computational resources, we were not able to conduct experiments on DPS [27]
on large-scale datasets for quantitative comparison. However, we conducted qualitative experiments
on ImageNetV2 [28] (results are shown in Figure 26). The dataset is constructed to avoid testing
images’ presence in the training set of the inverted diffusion model.

6 Proofs
6.1 Regarding inhomogeneous degradation-aware layer
Proposition. Given a latent vector 𝑭in ∈ ℝ𝑐×2ℎ×2𝑤. For any combination of four 2 × 2 depthwise
convolution layers {𝐶𝑘 : 𝑘 ∈ ℕ4}, with stride 2 and spatially-varying kernel 𝑊 (𝑘) ∈ ℝℎ×𝑤×𝑐×2×2,
suppose there exists some 𝑢(𝑘)

𝑝𝑞𝑟’s such that 𝑊 (𝑘)
𝑖𝑗𝑝𝑞𝑟 = 𝑢(𝑘)

𝑝𝑞𝑟𝑊
(1)
𝑖𝑗𝑝𝑞𝑟 for every 𝑖 ∈ {2, 3, 4}. Then, there

exists an 𝒆 ∈ ℝ4𝑐,ℎ/2,𝑤/2 such that

(IDA (𝑭in, 𝒆))𝑝,2𝑖+𝑎,2𝑗+𝑏 = (𝐶2𝑎+𝑏−2(𝑭in))𝑝,𝑖,𝑗
, (16)

for 𝑎, 𝑏 ∈ {1, 2}.

Proof   For the convenience of notations, all matrices and tensors are indexed from 0. See Figure 27
for the visualization of the proof.

IDA(𝑭in, 𝒆) = DConv2(ConvDS1(DConv1(𝒆)) ⊙ ConvDS2(𝑭in)) (17)

Let the weight 𝑊𝑝𝑞𝑖𝑗 ∈ ℝ𝑐𝑖×𝑐𝑜×𝑘×𝑘 for ConvDS2 be



Figure 27:  The rationalization of the proof of the proposition.

𝑊𝑝,4𝑝,0,0 = 1,

𝑊𝑝,4𝑝+1,0,1 = 1,

𝑊𝑝,4𝑝+2,1,0 = 1,

𝑊𝑝,4𝑝+3,1,1 = 1,

(18)

where

𝑐𝑜 = 4𝑐𝑖 (19)

. Let all other entries in 𝑊  be zero.

then,

𝑓out
𝑝,2𝑖+𝑘1,2𝑗+𝑘2

= 𝑓 interim
4𝑝+2𝑘1+𝑘2,𝑖,𝑗. (20)

Let 𝑤1 ≔ ConvDS1(DConv1(𝒆)). If ConvDS1 and DConv1 cancel each other, then we have 𝑒 = 𝑤.

Suppose we can construct 𝒆 and ConvDS1 and DConv1 such that

𝑤4𝑝+2𝑞+𝑟,𝑖,𝑗 ≔ 𝑊 (0)
𝑖𝑗𝑝𝑞𝑟,    where 𝑞, 𝑟 ∈ {0, 1}. (21)

Then, let 𝑉 ∈ ℝ𝑐𝑜×𝑐𝑖×3×3, the weight for DConv2, be defined as:

𝑉 (𝑝, 4𝑝 + 2𝑘1 + 𝑘2, 𝑎, 𝑏) = 𝑢(2𝑎+𝑏)
𝑝,𝑘1,𝑘2

,  for 𝑘1, 𝑘2, 𝑎, 𝑏 ∈ {0, 1}, (22)

where 𝑢(0)
𝑝,𝑘1,𝑘2

= 1 for 𝑘1, 𝑘2 ∈ {0, 1}, and 𝑢(𝑘)
𝑝,𝑘1,𝑘2

’s are defined as in the main paper for 𝑘 = 1, 2, 3.

Then



𝑓out
𝑝,2𝑖+𝑎,2𝑗+𝑏 = ∑

𝑘1,𝑘2

𝑢(2𝑎+𝑏)
𝑝,𝑘1,𝑘2

𝑤4𝑝+2𝑘1+𝑘2,𝑖,𝑗𝑓 interim
4𝑝+2𝑘1+𝑘2,𝑖,𝑗

= ∑
𝑘1,𝑘2

𝑢(2𝑎+𝑏)
𝑝,𝑘1,𝑘2

𝑤4𝑝+2𝑘1+𝑘2,𝑖,𝑗𝑓 in
𝑝,2𝑖+𝑘1,2𝑗+𝑘2

(23)

Let 𝑤4𝑝+2𝑘1+𝑘2,𝑖,𝑗 = 𝑊 (0)
𝑖𝑗𝑝𝑘1𝑘2

 Then,

𝑓out
𝑝,2𝑖+𝑎,2𝑗+𝑏 = ∑

𝑘1,𝑘2

𝑢(2𝑎+𝑏)
𝑝,𝑘1,𝑘2

𝑊 (0)
𝑖𝑗𝑝𝑘1𝑘2

𝑓 in
𝑝,2𝑖+𝑘1,2𝑗+𝑘2

= ∑
𝑘1,𝑘2

𝑊 (2𝑎+𝑏)
𝑖𝑗𝑝𝑘1𝑘2

𝑓 in
𝑝,2𝑖+𝑘1,2𝑗+𝑘2

= (𝐶2𝑎+𝑏(𝑓 in))
𝑝,𝑖,𝑗

(24)

What remains to be shown is that ConvDS1 and DConv1 can be constructed to cancel each other.

6.2 Regarding disentangle-by-compression
In the main paper, we claim that the disentangle-by-compression technique is able to achieve three
effects:
1. separating degradation from distorted images contents,
2. segregating inhomogeneous from homogeneous distortions, and
3. disentangling individual degradation components.

We have fully demonstrated the third effect in the main paper. The remainder of this section is
dedicated to proving first and second effects.

6.2.1 Separating degradation from images contents
We make the following assumptions:
• A-1 With information about the degradation process and the clean image, the degraded image can

be exactly reconstructed, albeit the difference of random state difference:

𝐻(𝒚|𝒙, 𝒅) = 0. (25)
• A-2 The distortion process is independent of the clean image:

𝐼(𝒙; 𝒅) = 0. (26)
• A-3 The distortion can be inferred from the degraded image:

𝐻(𝒅|𝒚) = 0. (27)
• A-4 When an appropriate perceptual similarity loss ℒsim = 𝑑(𝒚, 𝒚) is used, the reconstructed

distorted image 𝒚 is assumed to be similar enough to 𝒚, i.e., 𝒚 =
𝜇

𝒚 (which means 𝐻(𝒚|𝒚) =
𝐻(𝒚|𝒚) = 0).

Proposition With the assumptions (A-1) to (A-4), the optimal solution for minimizing 𝐻(𝒆) in our
model architecture is to minimize 𝐼(𝒆; 𝒙).

Proof

Since (25) and (27), we have¹

𝐻(𝒚) = 𝐼(𝒙; 𝒚) + 𝐼(𝒅; 𝒚). (28)

Using (26), we have²

¹𝐼(𝒙; 𝒅 | 𝒚) = 𝐻(𝒅 | 𝒚) − 𝐻(𝒅 | 𝒙, 𝒚) = 0; 𝐼(𝒙; 𝒅; 𝒚) = 𝐼(𝒙; 𝒅) − 𝐼(𝒙; 𝒅 | 𝒚) = 0.
²𝐻(𝒅) = 𝐻(𝒅 | 𝒚) + 𝐼(𝒅; 𝒚) = 𝐼(𝒅; 𝒚).



𝐻(𝒚) = 𝐼(𝒙; 𝒚) + 𝐻(𝒅). (29)

However, by the generation process of 𝒚 (𝒚 = 𝑓(𝒙, 𝒆)) (albeit the difference of random state), we
have

𝐻(𝒚) = 𝐼(𝒙; 𝒚) + 𝐼(𝒆; 𝒚) (30)

Applying A-4, we have

𝐻(𝒅) = 𝐼(𝒅; 𝒚) = 𝐼(𝒅; 𝒚) = 𝐼(𝒅; 𝒆) (31)

Due to the generation process outlined in the main text, we know that

𝐻(𝒆 | 𝒙, 𝒅) = 𝐻(𝒆 | 𝒚) = 0. (32)

Combining A-4, we have

𝐻(𝒆) = 𝐼(𝒆; 𝒙) + 𝐻(𝒆 | 𝒙)
= 𝐼(𝒆; 𝒙) + 𝐼(𝒅; 𝒆 | 𝒙) + 𝐻(𝒆 | 𝒙, 𝒅)

= 𝐼(𝒆; 𝒙) + 𝐼(𝒅; 𝒆 | 𝒙) = 𝐼(𝒆; 𝒙) + 𝐼(𝒅; 𝒆 | 𝒙) + 𝐼(𝒅; 𝒙) + 𝐻(𝒅 | 𝒙, 𝒆)
= 𝐼(𝒆; 𝒙) + 𝐻(𝒅).

(33)

Since 𝐻(𝒅) is a fixed (but unknown) constant, by minimizing 𝐻(𝒆), we are minimizing 𝐼(𝒆; 𝒙),
which encourages 𝒆 to contain no information in 𝒙, disentangling the degradation from image
content.

Q.E.D.

6.2.2 Segregating inhomogeneous and homogeneous distortions
We further add one more assumption: (A-5) there exists two kinds of degradations. The
homogeneous one 𝒅𝑔 is the same for all geometry location, and the inhomogeneous one 𝒅(𝑖)

𝑙  is
different for different geometry location (𝑖), meaning that 𝒅(𝑖)

𝑙  is independent of 𝒅(𝑗)
𝑙  for 𝑖 ≠ 𝑗.

Proposition Let 𝒆𝑔 and 𝒆(𝑖)
𝑙  denote the properly-learned degradation representations at location (𝑖).

With the assumptions (A-1) to (A-5), the optimal solution for ℒ = 𝑘𝐻(𝒆𝑔) + ∑𝑖 𝐻(𝒆(𝑖)
𝑙 ), where

1 < 𝑘 < 𝑛, satisfies the following properties:
1. Each 𝒆(𝑖)

𝑙  only contains degradation information about the corresponding geometry location, and
𝒆𝑔 does not contain any location-specific information: {𝒆(1)

1 , …, 𝒆(𝑛)
𝑛 , 𝒆𝑔} are jointly

independent.
2. Each 𝒆(𝑖)

𝑙  and 𝒆𝑔 contains just enough information to reconstruct the corresponding degradation:

𝐻(𝒅𝑔) = 𝐻(𝒆𝑔), 𝐻(𝒅(𝑖)
𝑙 ) = 𝐻(𝒆(𝑖)

𝑙 ). (34)

Proof    Based on (A-1), (A-3) and (A_4) and out network architecture, we know that:
• For the whole image, 𝐻(𝒅𝑔, 𝒅

(1)
𝑙 , …, 𝒅(𝑛)

𝑙 | 𝒆𝑔, 𝒆
(1)
𝑙 , …, 𝒆(𝑛)

𝑙 ) = 0
• A spatial location (𝑖), 𝐻(𝒅𝑔, 𝒅

(𝑖)
𝑙 | 𝒆𝑔, 𝒆

(𝑖)
𝑙 ) = 0

Hence, we have the following inequalities:

𝐻(𝒆𝑔) + ∑
𝑛

𝑖=1
𝐻(𝒆(𝑖)

𝑙 ) ≥ 𝐻(𝒆𝑔, 𝒆
(1)
𝑙 , …, 𝒆(𝑛)

𝑙 )

≥ 𝐻(𝒅𝑔, 𝒅
(1)
𝑙 , …, 𝒅(𝑛)

𝑙 ) = 𝐻(𝒅𝑔) + ∑
𝑛

𝑖=1
𝐻(𝒅(𝑖)

𝑙 )
(35)



𝐻(𝒆𝑔) + 𝐻(𝒆(𝑖)
𝑙 ) ≥ 𝐻(𝒆𝑔, 𝒆

(𝑖)
𝑙 ) ≥ 𝐻(𝒅𝑔, 𝒅

(𝑖)
𝑙 ) = 𝐻(𝒅𝑔) + 𝐻(𝒅(𝑖)

𝑙 ) (36)

The first inequality in (35) becomes an equality iff {𝒆(1)
1 , …, 𝒆(𝑛)

𝑛 , 𝒆𝑔} are jointly independent [29].
Similarly, the first inequality in (36) becomes an equality iff 𝒆𝑔 and 𝒆(𝑖)

𝑙  are independent.

From (36), we have

𝑛𝐻(𝒆𝑔) + ∑
𝑖

𝐻(𝒆(𝑖)
𝑙 ) ≥ 𝑛𝐻(𝒅𝑔) + ∑

𝑖
𝐻(𝒅(𝑖)

𝑙 ) (37)

Let 𝐴 ≔ 𝑘−1
𝑛−1 . Then 0 < 𝐴 < 1. Multiplying (35) by (1 − 𝐴) and (37) by 𝐴, we have

(1 + (𝑛 − 1)𝐴)𝐻(𝒆𝑔) + ∑
𝑖

𝐻(𝒆(𝑖)
𝑙 ) ≥ (1 + (𝑛 − 1)𝐴)𝐻(𝒅𝑔) + ∑

𝑖
𝐻(𝒅(𝑖)

𝑙 ), (38)

which is equivalent to

ℒ = 𝑘𝐻(𝒆𝑔) + ∑
𝑖

𝐻(𝒆(𝑖)
𝑙 ) ≥ 𝑘𝐻(𝒅𝑔) + ∑

𝑖
𝐻(𝒅(𝑖)

𝑙 ). (39)

We note that the value on the RHS is realizable, bacause 𝒆𝑔 = 𝒅𝑔 and 𝒆(𝑖)
𝑙 = 𝒅(𝑖)

𝑙  realizes the value.

Now we examine the properties of the optimal solution: Since the equality in (39) holds, all
inequalities in (35) and (36) hold as equalities. Hence, we have³

𝐻(𝒆𝑔) + ∑
𝑛

𝑖=1
𝐻(𝒆(𝑖)

𝑙 ) = 𝐻(𝒆𝑔, 𝒆
(1)
𝑙 , …, 𝒆(𝑛)

𝑙 ), (40)

meaning {𝒆(1)
1 , …, 𝒆(𝑛)

𝑛 , 𝒆𝑔} being jointly independent (for an optimal solution). With such optimal
solution, we also know that (By substracting (35) from (37))

(𝑛 − 1)𝐻(𝒆𝑔) = (𝑛 − 1)𝐻(𝒅𝑔). (41)

Hence, 𝐻(𝒆𝑔) = 𝐻(𝒅𝑔) and 𝐻(𝒆(𝑖)
𝑙 ) = 𝐻(𝒅(𝑖)

𝑙 ) for all 𝑖.

Q.E.D.

6.2.2.1 Discussion
In the proof, we show that as long as the ratio between coefficients 𝑘 for 𝐻(𝒆𝑔) and ∑𝑖 𝐻(𝒆(𝑖)

𝑙
satisfies 1 < 𝑘 < 𝑛, the optimal solution satisfies the desirable properties. However, in practice, we
calculate bits per picture for 𝒆𝑔 and bits per pixel for 𝒆(𝑖)

𝑙 , which means 𝑘 is indeed equivalent to
𝜆𝑔

1/𝑁𝜆𝑙
, where 𝑁  is the number of pixels in the image. Hence, the condition 𝜆𝑔 and 𝜆𝑙 should satisfy

is

1
𝑁

<
𝜆𝑔

𝜆𝑙
< 𝑛

𝑁
. (42)

While the number of spatial location is ambiguous to define, we can always set 𝜆𝑔 close to 𝜆𝑙 to
satisfy the condition in theory. In practice, 𝜆𝑔 = 1

20𝜆𝑙 works well for patches sized from 64 to 384.

³From now on, 𝒆𝑔 and 𝒆(𝑖)
𝑙  denote the optimal solution, instead of any feasible solution.



7 Examples for real-world inhomogeneous degradations

(a) Motion Blur with inhomogeneous
strengths

(b) Motion Blur on limited area (c) Motion Blur with different shape and
strength

Figure 28: Examples of some inhomogeneous image distortions sampled from SPAQ [30]. In (a), the
blur kernel for motion blur on the right is larger than the left. In (b), only the motorcyclist is feected

by motion blur, the background is rather clear. In (c), the left has very limited level of blur but the
right hand side has a severe blur with curved trajectory.

Several types of spatially inhomogeneous degradations are observed from authentic images
(Figure 28 shows some examples from SPAQ [30]).
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